УДК 556.314+556.531

ГЕОХИМИЧЕСКИЕ ОСОБЕННОСТИ РАСПРЕДЕЛЕНИЯ ОСНОВНЫХ И РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ В ПАРАТУНСКОЙ И БОЛЬШЕБАННОЙ ГИДРОТЕРМАЛЬНЫХ СИСТЕМАХ КАМЧАТКИ

О.В. Чудаев¹, Г.А. Челноков¹, И.В. Брагин¹, Н.А. Харитонова^{1,2}, С.Н. Рычагов³, А.А. Нуждаев³, И.А. Нуждаев³

¹ФГБУН Дальневосточный геологический институт ДВО РАН, пр-т 100 лет Владивостоку 159, г. Владивосток, 690022; e-mail: chudaev@fegi.ru

 2 ФГБОУ ВО Московский государственный университет им. М.В. Ломоносова, Ленинские горы, г. Москва ГСП-1, 119991

³ФГБУН Институт вулканологии и сейсмологии ДВО РАН, бульвар Пийпа 9, г. Петропавловск-Камчатский, 683006 Поступила в редакцию 29 марта 2016 г.

В статье представлены оригинальные данные по содержанию и распределению основных и редкоземельных элементов в современных гидротермальных системах Паратунского и Большебанного месторождений термальных вод. Несмотря на сходный геохимический тип вод, в пределах отдельных участков гидротермальных систем существуют различия основного состава, обусловленные временем взаимодействия вода—порода, температурным режимом, возможным влиянием морских интрузий. Уровни содержаний редкоземельных элементов (РЗЭ) в изученных термах крайне низки (доли мкг/л). Отличительной особенностью изученных термальных вод является наличие положительной европиевой аномалии. Обсуждаются причины появления этой аномалии. Расчеты форм миграции РЗЭ показали, что основными параметрами, регулирующими образование комплексов РЗЭ в Паратунской и Большебанной гидротермальных системах, являются их индивидуальные химические свойства, а также рН, Еh и температура водного раствора.

Ключевые слова: азотные термы, редкоземельные элементы, взаимодействие вода-порода, Камчатка.

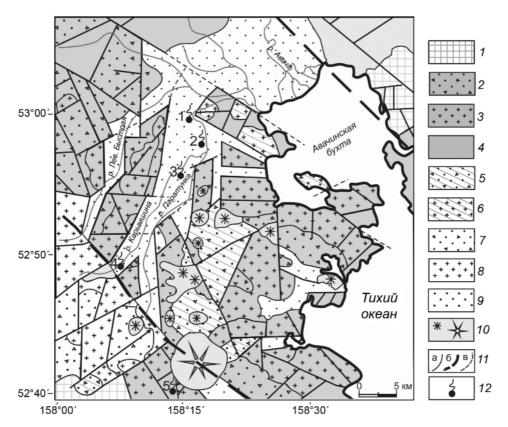
ВВЕДЕНИЕ

Геохимическая характеристика современных гидротерм является основой для понимания процессов их формирования и эволюции в результате взаимодействия вода-порода. Наряду с основными катионами и анионами (Ca^{2+} , Na^+ , K^+ , Mg^{2+} , Cl^- , $HCO_3^ SO_4^{2-}$) в последние годы активно исследуются редкоземельные элементы, которые рассматриваются как чуткие индикаторы геохимических процессов, происходящих в современных гидротермальных системах [9, 22, 27, 29, 31-33, 37-39]. Определение редкоземельных элементов (РЗЭ) стало возможным благодаря появлению новых методов масс-спектрометрического анализа (ІСР-MS), а в последнее время приборов ICP-MS высокого разрешения (HR-ICP-MS). Изучение поведения РЗЭ в природных водах Дальнего Востока было начато более 15 лет назад [19, 21, 22, 26, 27, 34, 35, 40, 42]. Получены уникальные данные по углекислым минеральным водам, минерализованным кислым водам областей активного вулканизма, пресным подземным и речным водам. В то же время, азотные щелочные термы остались слабо изученными, хотя ресурсы этих вод огромны, особенно на Камчатке. Авторами сделана попытка устранить этот пробел и представить результаты по редкоземельным элементам на примере Паратунского и Большебанного месторождений термальных вод, которые расположены в пределах Паратунского геотермального района. Основная сложность при изучении данного типа вод связана с крайне низкими содержаниями в них РЗЭ (доли мкг/л). Разработанные в последнее время методические приемы позволяют минимизировать эту проблему [9]. Кроме того, была отработана методика определения РЗЭ во взвеси из малых навесок, остающейся на фильтрах при получении фильтрата водных проб [3]. Все это позволило получить достоверные данные по содержаниям РЗЭ не только в фильтрате, но и во взвеси.

Цель данной работы — с использованием современных методик и приборной базы установить уровни содержаний редкоземельных элементов и их фракционирование в азотных термальных водах Паратунского геотермального района. Наряду с РЗЭ были рассмотрены основные элементы, определяющие геохимический облик щелочных терм. Кроме того проведено сравнение азотных термальных вод Паратунского геотермального района с другими азотными термами Камчатки и Сихотэ-Алиня.

ОБЪЕКТЫ И МЕТОДЫ ИССЛЕДОВАНИЙ

В пределах Паратунского геотермального района изучены Паратунская и Большебанная гидротермальные системы, которые могут иметь гидродинамическую связь. Исследуемые термальные воды принадлежат к одному геохимическому типу – щелочным азотным сульфатно-хлоридным натрий-кальциевым водам - и достаточно хорошо изучены в геологическом и гидрогеологическом плане. Данные по содержанию основных элементов и некоторых микроэлементов опубликованы в нескольких работах [11, 14, 20], также есть сведения по РЗЭ непосредственно для Верхнепаратунского участка [110]. В то же время, прошло более 20 лет с последнего детального опробования и анализа этих систем, и возникла потребность, в рамках мониторинговой программы, нового их изучения с применением современных аналитических методов и приемов. Кроме того, необходимо создать базу данных по РЗЭ, достоверные сведения по которым отсутствуют в силу аналитических сложностей их определения. Нами было проведено детальное опробование в сентябре 2015 г. Паратунского и Большебанного месторождений с целью изучения химического состава вод. Особое внимание уделялось определению РЗЭ. Для сравнения опробовались Начинское, Кеткинское, Апачи и другие проявления, которые по составу также относятся к щелочным азотным термам.

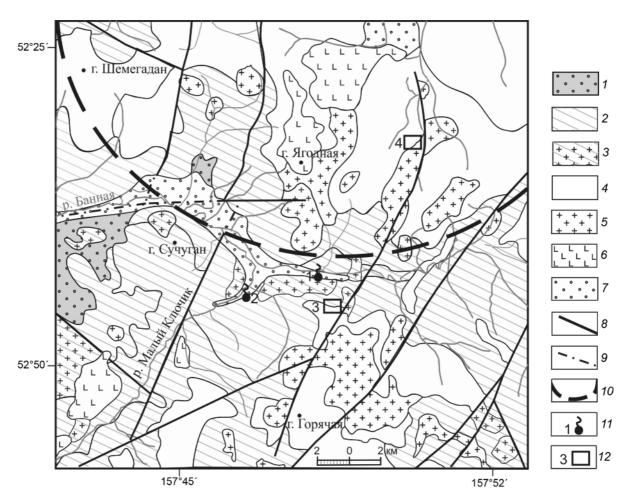

Авторами был разработан единый протокол отбора проб в полевых условиях с учетом особых требований к посуде, фильтрам, реактивам при консервации проб, а также аналитическим работам в лаборатории [3, 21, 45]. Для получения водного фильтрата использовался стандартный размер мембранного фильтра 0.45 мкм фирмы «Advantec». Портативными приборами, непосредственно в месте отбора проб, замерялись: рН, Eh, TDS (общая минерализация воды). Определение гидрокарбонат-иона проводилось прямым титрованием. Основные ионы определялись методом жидкостной хроматографии в Центре коллективного пользования ДВГИ ДВО РАН и Институте вулканологии и сейсмологии ДВО РАН. Для уста-

новления содержаний РЗЭ в фильтрате использовался метод ICP-MS. При обработке полученных аналитических данных применялся путь математического устранения оксидных и гидроксидных помех на аналитических массах РЗЭ при прямом ICP-MS определении их низких содержаний. Он состоял в учете интерференций на основе La, Ce, Pr, Nd, Sm, Eu, Gd, Тb и Dy при помощи оригинальной математической модели внешней корректировки, а Ва – при помощи оригинальной математической модели внутренней корректировки [9]. Определение РЗЭ выполнено параллельно в двух лабораториях: «Центр коллективного пользования» ДВГИ ДВО РАН, г. Владивосток и Activation laboratory, Канада.

Неорганические формы миграции РЗЭ были рассчитаны с использованием программного комплекса Селектор-Windows [25], в котором использовалась база термодинамических данных SPRONGS88, содержащая термодинамические параметры для всех РЗЭ. Моделирование форм миграции РЗЭ было проведено для измеренного (фактического) состава подземных вод, однако именно рН и Ећ водной системы являлись базовыми параметрами, на которых строилась модель. В случае несовпадения концентраций основных ионов, либо физико-химических параметров модельных растворов с реально измеренными проводилась калибровка модели до достижения соответствия. При расчетах использовались концентрации основных ионов, а также Fe, Mn, Si, Al и РЗЭ. В расчет включались следующие комплексы РЗЭ: P39³⁺, P39[CO₃]⁺, P39[HCO₃]²⁺, P39[OH₃]⁺, P39[Cl]²⁺, P39[F]²⁺, P39[SO₄]⁺, P39[O]⁺, P39[O,]⁻, P39[O,H]*, a также Ce⁴⁺ и Eu²⁺.

ГЕОЛОГО-ГИДРОГЕОЛОГИЧЕСКИЕ УСЛОВИЯ

Геологическому описанию Юго-Восточной Камчатки посвящено большое количество работ [1, 2, 4-8, 12, 13, 16, 24]. В целом, в геологических построениях представления большинства авторов сводятся к следующему. Паратунский геотермальный район расположен в пределах Южно-Камчатского прогиба складчато-блоковой зоны Восточно-Камчатского вулканического пояса. В тектоническом плане он приурочен к северной части Южно-Камчатской грабен-синклинали, трассируемой крупнейшими в регионе отрицательными аномалиями силы тяжести [7]. С севера район ограничен Малко-Петропавловской зоной поперечных дислокаций, с запада - Охотской платформой, с юга – вулкано-тектоническими структурами Мутновско-Жировского вулканогенно-рудного и геотермального центра. Район характеризуется развитием контрастных по составу магматических


Рис. 1. Схематическая геологическая карта Паратунской гидротермально-магматической системы. Составлена с использованием материалов Государственной геологической съемки [6] и тематических исследований [2, 5].

I — образования островной дуги на коре океанического типа: нерасчлененные верхнемеловые вулканогенно-осадочные отложения и субвулканические тела; 2—4 — отложения первого этапа формирования островной дуги на коре переходного типа: 2 — эоцен-миоценовые вулканогенно-осадочные породы, 3 — миоценовые гипабиссальные интрузии и субвулканические тела, 4 — эффузивно-пирокластические покровы этого же возраста; 5—8 — отложения второго этапа: 5 — плиоценовые эффузивно-пирокластические образования андезибазальтовой формации, 6 — субвулканические тела этой формации, 7 — покровные пирокластические отложения плиоцен-эоплейстоценовой риодацитовой формации, 8 — субвулканические тела этой формации; 9 — рыхлые отложения плейстоцен-голоценового возраста Паратунского (в центре территории) и Авачинского (на севере) грабенов; 10 — голоценовые базальты: лавовые потоки (на северо-востоке территории), шлаковые конусы и стратовулкан Вилючинский; 11 — разломы: 1 — достоверные, 12 — исследованные группы термальных источников: 1 — Нижнепаратунские, 2 — Среднепаратунские, 3 — Верхнепаратунские, 4 — Карымшинские, 5 — Вилючинские.

пород, широким распространением игнимбритов и риолитовых туфов, формированием крупных кальдер и купольно-кольцевых структур. Согласно новейшим представлениям, Паратунский геотермальный район входит в состав Южно-Камчатской геотермальной провинции [17] и наследует структуру долгоживущего (с эоцена по голоцен) Паратунско-Банного вулканогенно-рудного центра [13, 15]. Основные геотермальные проявления приурочены к двум крупным гидротермально-магматическим системам: Паратунской и Ягоднинско-Банной.

Паратунская гидротермально-магматическая система характеризуется блоковым строением (рис. 1). Выделяется три этапа эволюции системы: эоцен-миоценовый, плиоцен-эоплейстоценовый и плейстоцен-голоценовый. С первым этапом связа-

но образование андезитовой формации - крупных субвулканических тел диоритов и эффузивно-пирокластических покровов от среднего до кислого составов. Во второй этап формировались андезибазальтовая формация (широкое развитие субвулканических тел, лав и пирокластических отложений) и риодацитовая формация (покровные пирокластические отложения и субвулканические тела кислого состава). Завершающий этап отличается контрастным магматизмом: образованием кальдер, мощных потоков кислой пирокластики и игнимбритов, и в то же время - стратовулканов, шлаковых конусов и лавовых потоков базальтового состава. К этому этапу приурочено формирование Паратунского грабена, в блоковой структуре которого локализована одноименная гидротермальная система. Ягоднин-

Рис. 2. Схематическая геологическая карта района Ягоднинско-Банной гидротермально-магматической системы и современной Большебанной гидротермальной системы. Составлена с использованием материалов [4].

I — осадочные и вулканогенно-осадочные породы жировской толщи; 2—3 — средне-верхнемиоценовый структурный ярус: 2 — покровные отложения южно-быстринской и карымшинской толщ, 3 — субвулканические образования этих толщ; 4—6 — плиоцен-четвертичный структурный ярус: 4 — андезибазальты начикинской и риолиты балаганчиковской толщ, 5 — субвулканические образования этих толщ, 6 — потоки голоценовых базальтов; 7 — современные аллювиальные отложения, выполняющие грабен р. Банной (в центре схемы) и Начикинский грабен (на севере территории); 8 — разломы достоверные; 9 — разломы предполагаемые; 10 — условная тектоническая граница Ягоднинско-Банной гидротермально-магматической системы; 11 — геотермальные проявления и их номера: 1 — Большебанное геотермальное месторождение, 2 — термальные источники Малые Банные; 12 — месторождения минерального сырья и их номера: 3 — Большебанное рудное, 4 — Ягоднинское цеолитов и активных минеральных добавок.

ско-Банная гидротермально-магматическая система, включающая Большебанное месторождение термальных вод, приурочена к купольно-кольцевой вулкано-тектонической структуре диаметром около 30 км [15]. В южной части системы выделяется магматический центр вследствие образования крупных многофазных интрузивно-субвулканических и экструзивно-субвулканических комплексов, имеющих состав от сиенодиоритов до трахириолитов и базальтов (рис. 2). В основании системы залегают породы эоцен-нижнемиоценового структурного яруса: песчаники, алевролиты, гравелиты, туффиты жировской толщи. Выделяется два этапа эволюции системы: средне-верхнемиоценовый (раннеорогенный) и

плиоцен-четвертичный (позднеорогенный). Первый ярус представлен покровной фацией (андезиты, их туфы, кластолавы, туффиты, туфогравелиты) и субвулканическими образованиями (штоки андезитов, диоритов и габбродиоритов) южно-быстринской, а также карымшинской толщ. Второй ярус включает породы двух толщ: начикинской андезибазальтовой плиоценового возраста (андезиты, базальты, туфы, лавобрекчии, туффиты, и соответствующие им по составу субвулканические тела) и балаганчиковской риолитовой четвертичного возраста (лавы риолитов, дацитов, туфы и игнимбриты; субвулканические и экструзивно-жерловые образования). Экструзивносубвулканические комплексы первого структурного

яруса контролируют положение Большебанного рудного и одноименного геотермального месторождений и Малых Банных источников. К аналогичному комплексу второго структурного яруса приурочено Ягоднинское месторождение цеолитов и активных минеральных добавок (рис. 2). Современная гидротермальная система Большебанная расположена в верхнечетвертичном грабене р. Банной, который наследует более древние субкольцевые тектонические нарушения, трассирующие внешний контур гидротермально-магматической системы [15]. Гидротермальная система локализована в мозаично-блоковой структуре пород, с погружением блоков по крутопадающим разломам на север и на восток и юго-восток [16]. Таким образом, мы рассматриваем Паратунскую и Большебанную гидротермальные проявления как отражение современного периода развития длительно живущего Паратунско-Банного вулканогенно-рудного центра.

Значительные успехи в гидрогеологическом изучении Паратунского геотермального района связаны, в основном, с поисково-разведочными работами, проводимыми в 1960-1970 гг. с целью теплоснабжения населенных пунктов Южной Камчатки. Последовательно были разбурены и открыты основные участки Паратунского месторождения термальных вод и подсчитаны его запасы. Обзор и анализ этих работ приведен в статье [14]. Паратунский грабен, в пределах которого располагается одноименное месторождение термальных вод, занимает одно из низких положений по отношению к Тихому океану. Среднее превышение площади водоразделов над долиной составляет примерно 400 м. Район характеризуется высоким уровнем среднего модуля подземного стока – 33.4 л/с⋅км². В пределах месторождения выделяются несколько участков термопроявлений (Верхне-, Средне-, Нижнепаратунский, Северный и Карымшинский), причем отмечается гидравлическая связь между ними [14]. Происходит падение максимальных упоров от Верхнепаратунского участка к Среднепаратунскому, Северному и Нижнему. Максимальный напор вод над поверхностью земли для Верхнепаратунского участка составляет 118 м, Нижнепаратунский характеризуется напором, равным 36.5 м [14]. Таким образом, термальные воды являются напорными и характеризуются преимущественно трещинно-жильным типом циркуляции. Горячие воды с температурой до 100 °C вскрыты скважинами в интервале глубин 600-1500 м. Максимальная водообильность приурочена к зонам контактов эффузивных пород с дайками интрузий среднего и кислого состава, а также трещиноватым туфам. Балансовая площадь месторождения составляет 244 км². Данные по изотопам кислорода и водорода свидетельствуют, что основным источником водного питания являются метеорные воды [22]. Среди растворенных газов преобладает азот [14].

Большебанное месторождение, так же как и Паратунское, было детально изучено в 1961-1970 гг. Камчатским геологическим управлением с привлечением большого количества исследователей отраслевых НИИ и Академии наук СССР. Подробный анализ результатов дан в работах [11, 12]. Термальные источники Большие и Малые Банные расположены в грабене долины р. Банной и приурочены к крупному субвулканическому телу среднего состава (рис. 2). Предполагается, что их тепловое питание связано с массивом сопки Горячей [14], вероятно, объединяющим в единую вулкано-плутоническую структуру разновозрастные (от миоцена по голоцен) интрузивно-субвулканические комплексы. Источники характеризуются незначительным дебитом 1-2 л/с и температурой от 57 °C до 100 °C в котлах. Парогазовая смесь на оголовках скважин может достигать температуры 120 °С. Тип циркуляции вод преимущественно трещинно-жильный. Водоносные горизонты, по данным бурения, отмечаются в интервале глубин 300-600 до 800-1000 м. Балансовая площадь Большебанного месторождения составляет 45.8 км² [11]. По газовому составу воды являются углекисло-азотными. Существует предположение, что Паратунская и Большебанная гидротермальные системы гидрогеологически связаны между собой. Данное предположение вполне оправдано, так как с геологической точки зрения они формируют единый Паратунско-Банный вулканогенно-рудный центр.

Таким образом, геолого-гидрогеологические условия и обилие атмосферных осадков (> 1200 мм/год) создали предпосылки для формирования крупнейших месторождений термальных вод в пределах Паратунского геотермального района. Утвержденные запасы воды с температурой 75–80 °C для Паратунского месторождения составляют 44 900 м³/сутки [17].

ОБЩАЯ ГИДРОГЕОХИМИЧЕСКАЯ ХАРАКТЕРИСТИКА

Термальные воды Паратунского месторождения принадлежат к группе азотных щелочных терм (табл. 1). Это щелочные воды с рН, варьирующим в интервале 8–9, и Еh от -150 до -180 мВ. Общая минерализация вод (TDS) изменяется в интервале 1.05–2.43 г/л, причем максимальных значений она достигает на Нижнепаратунском участке (скв. K-51). Температура вод на выходе из скважин варьирует от 50 °C

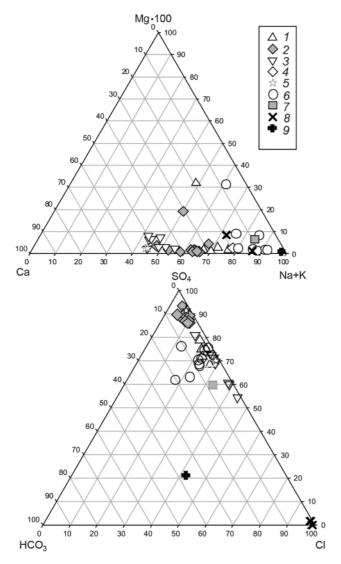
Таблица 1. Средние содержания главных ионов и основные физико-химические параметры гидротерм и окружающих их речных вод Паратунского геотермального района (концентрации ионов даны в мг/л).

	T °C	рН	Eh(M _B)	Ca ²⁺	K^{+}	Mg^{2+}	Na ⁺	HCO ₃	Cl ⁻	$\mathrm{SO_4}^{2-}$	TDS г/л
Верхнепаратунские (n = 6)	54	8.37	-150	71.50	3.74	0.09	192.23	28.27	96.78	465.83	1.2
Среднепаратунские (n = 13)	72	8.55	-157	113.39	4.61	0.06	205.92	27.58	46.92	663.08	1.2
Нижнепаратунские $(n = 8)$	69.5	7.94	-	280.14	6.71	0.18	305.05	31.43	333.94	953.75	2.43
Северный участок (n = 2)	49.5	8.39	-	281.15	3.66	0.08	266.45	23.49	192.00	1056.50	1.05
Карымшина	75	8.1	-180	48.35	3.84	0.04	217.80	33.18	125.00	426.00	1.32
Большебанные (n = 9)	93	7.75	-	23.10	10.44	0.13	215.04	58.89	84.12	381.07	0.75
р. Карымшина	8.8	7.2	+129	11.26	0.39	0.80	6.92	24.86	3.16	16.80	0.87
р. Паратунка (низ.)	10.5	7.87	+201	15.35	0.64	1.40	11.11	30.66	4.96	37.40	0.1
р. Паратунка (верх.)	7.0	7.7	+183	7.06	0.55	1.03	3.50	24.4	2.05	9.79	0.57
р. Банная (верх.)	7.6	8.35	-	14.0	0.4	0.7	3.8	31.7	0.7	17.3	0.3
р. Банная (низ.)	10	7.82	-	9.60	0.7	0.5	6.4	20.7	2.1	17.3	0.38

Примечание. n – количество анализов, использованных для расчета среднего значения, TDS – общая минерализация, прочерк в графе – нет данных.

Таблица 2. Расчитанные температуры глубинного резервуара и средние содержания Si, B, F, Li в водах Паратунской и Большебанной гиротермальных систем в сравнении с термальными водами Сихотэ-Алиня (Аненские, Тумнинские, Амгу, Чистоводненские).

	T °C	Si,	B,	F,	Li,
Участки					-
	(p)max	мг/л	мг/л	мг/л	мкг/л
Верхнепаратунский					
(n = 6)	128.4	30.95	4.57	2.76	507.30
Карымшина	113.1	31.46	5.61	3.23	962.68
Среднепаратунский					
(n = 14)	126.2	33.39	2.08	1.80	248.72
Нижнепаратунский					
(n=8)	126.2	33.46	1.26	1.83	167.40
Северный участок					
(n=2)	111.7	22.04	1.19	1.78	122.95
Большебанное					
(n = 9)	187.8	89.69	1.77	3.27	749.98
Начики	135.4	48.15	4.68	2.73	266.15
Анненские*	99	37.8	-	2.7	71.5
Тумнинские*	86.5	28.7	-	0.8	11.4
$A_{M\Gamma y} (n = 3)**$	81	17.5	-	0.99	23.25
Чистоводненские					
(n = 5)**	61	12.65	< 0.01	3.68	42.99


Примечание. n – количество анализов для расчета среднего; T °C(p)max – рассчитанная максимальная температура по кварцевому геотермометру; * – данные [28]; ** данные [23]; прочерк – нет даных.

до 80 °C. Рассчитанные нами температуры глубинного резервуара с использованием кварцевого геотермометра дают следующие максимальные температуры: для Верхнепаратунского – 128.4 °C, Средне- и Нижнепаратунского – 126.2 °C. Карымшинское проявление, относящееся к Паратунскому месторождению, характеризуется температурой 113.1 °C, близкое значение имеет и Северный участок Паратунского месторо-

ждения (табл. 2). Любопытно, что Начикинское проявление термальных вод, расположенное примерно в 40 км по прямой от п. Паратунка, характеризуется температурой вод 135 °C.

По соотношению основных ионов в мг/экв % на диаграмме Пайпера изученные воды занимают вполне определенные поля; среди анионов преобладает сульфат-ион и хлор, а среди катионов - натрий и кальций (табл. 1, рис. 3), при крайне низком содержании Мд. По процентному соотношению натрия и кальция видно, что от Верхней к Нижней Паратунке и далее к Северному участку происходит увеличение содержания этих двух элементов. Отметим, что пресные подземные воды Верхней Паратунки имеют такое же соотношение кальция и натрия, как и термальные этого участка. Речные воды Верхней и Нижней Паратунки, при примерно равном соотношении кальция и натрия, характеризуются повышенным содержанием магния. Сравнивая по катионам составы термальных вод Паратунки и других термальных проявлений (Кеткинские, Начики и Апачи), отметим, что в последних значительно преобладает натрий, особенно это касается проявления Апачи, расположенного в 180 км на запад от Паратунки.

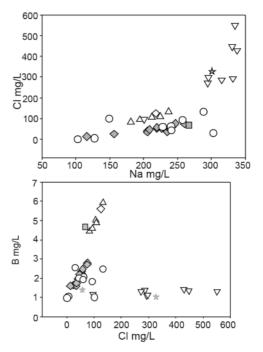

По соотношению анионов видно, что сульфатион резко преобладает над хлором, особенно это касается одной из скважин Северного участка и Средней Паратунки, далее происходит увеличение концентраций хлора на Верхней Паратунке и еще больший сдвиг в сторону хлора на Нижней (рис. 3). Кеткинские термы и Апачи характеризуются несколько иным соотношением ионов. Речные воды (Верхняя и Нижняя Паратунка, р. Карымшина) имеют примерно равное соотношение хлора и сульфат-иона, при подавляющем преимуществе гидрокарбонат-иона. Если срав-

Рис. 3. Диаграмма Пайпера для вод Паратунского геотермального района.

I-5 — Паратунская гидротермальнная система, участки: I — Вехнепаратунский, 2 — Среднепаратунский, 3 — Нижнепаратунский, 4 — Карымшина, 5 — Северный; 6 — Большебанная гидротермальная система; 7 — Начики; 8 — Кеткинские; 9 — Апачи.

нивать средние абсолютные значения основных элементов, то видно, что от Верхней к Нижней Паратунке идет нарастание содержаний количества кальция, натрия, сульфат-иона и хлора. На Нижней Паратунке происходит резкое увеличение содержания хлора (табл. 1). Учитывая, что Нижнепаратунский участок имеет самую высокую минерализацию вод, важно знать, какие ионы вносят наибольший вклад в увеличение минерализации. Наши расчеты показали, что натрий, кальций и хлор-ион вносят основную долю в увеличение минерализации на Нижнепаратунском участке. Существует предположение, на основе данных моделирования, о возможном влиянии морских

Рис. 4. Соотношение Na/Cl и B/Cl (мг/л) в водах Паратунской и Большебанной гидротермальных систем.

Условные см. на рис. 3.

интрузий на подземные воды Нижнепаратунского участка [10]. В этой связи интересно проследить взаимоотношение натрия и хлора (рис. 4). Наблюдается резкое возрастание содержаний хлора на фоне незначительного – натрия. Любопытна корреляция бора и хлора (рис. 4). В термальных водах Паратунской и Большебанной гидротермальных систем содержания бора и хлора характеризуются положительной связью, за исключением Нижнепаратунского и Северного участков, в которых эта связь отсутствует. Если мы обратимся к содержаниям брома, одного из индикаторов морских вод, то в скважинах Нижнепаратунского участка его количества равны 1.37 мг/л, скв. № 139 и 1.52 мг/л, скв. № 502. На других участках содержания брома значительно ниже и составляют десятые доли мг/л [22]. Это свидетельствует, на наш взгляд, о влиянии хлоридных натриевых вод морского происхождения на подземные воды Нижнепаратунского участка. С другой стороны, на увеличение минерализации Нижнепаратунского участка сказалось и время взаимодействия между водовмещающими породами и водным раствором (скорость водообмена). Гидрогеологические условия на Нижнепаратунском участке способствуют более длительному периоду взаимодействия вода-порода. Фактически этот участок, расположенный гипсометрически ниже, чем Верхне- и Среднепаратунский, является конечным резервуаром для приема вод с

других участков, и как следствие, это приводит также к увеличению общей минерализации. Вероятно, влияние «морского» фактора на состав вод Нижнепаратунского участка значительно выше.

Большебанное месторождение термальных вод по многим геохимическим показателям близко Паратунским и характеризуется тем же геохимическим типом вод. Общая минерализация воды несколько ниже чем на Паратунке. Среднее из 9 проявлений равно 750 мг/л, за счет меньшего содержания кальция и основных анионов по сравнению с Паратункой (табл. 1). В то же время, содержания калия и магния в несколько раз превосходят паратунские. Следует отметить, что температура на выходе в Банных проявлениях достигает 93 °C, а рН несколько ниже, чем в Паратунских водах. Максимальная температура, рассчитанная по кварцевому геотермометру, составляет 187.8 °C, что значительно превосходит температуру паратунских вод (табл. 2). На диаграмме Пайпера по основным анионам термальные воды Банного месторождения близки водам Верхнепаратунского участка, а по основным катионам отмечается некоторый сдвиг в сторону щелочей (Na+K) (рис. 3).

Наряду с основными ионами характерными индикаторами щелочных термальных вод являются и другие элементы, содержащиеся, как правило, в повышенных количествах: кремний, бор, фтор и литий. Это подтверждается и нашими данными (табл. 2). Для Паратунской гидротермальной системы средние вариации кремния укладываются в диапазон 33.46-22.04 мг/л, при этом существенных отличий для участков Верхне-, Средне- и Нижнепаратунского нет (30.95–33.46 мг/л). Относительно низкие содержания 22.04 мг/л отмечаются для Северного участка, а самые высокие зафиксированы в Начиках (48 мг/л). Для Большебанной гидротермальной системы среднее содержание кремния составляет 89.69 мг/л, т.е. практически в два раза выше чем на Паратунке (табл. 2). Это вполне объяснимо, так как в щелочной среде растворимость кремния увеличивается с ростом температуры. Как можно видеть, наблюдаемая и рассчитанная температура Большебанных гидротерм выше, чем Паратунских (таблицы 1, 2). Если сравнивать азотные термы Паратунской и Большебанной систем с другими термальными водами сходного геохимического типа, например Сихотэ-Алиня, то можно отметить следующее. Температуры вод на Сихотэ-Алине ниже, чем в изученных Камчатских водах, при этом идет последовательное ее снижение с севера Сихотэ-Алиня (Анненские) на юг (Чистоводненские). Соответственно, падает и концентрация кремния. Так же ведут себя литий и фтор, за исключением Чистоводненских терм,

циркулирующих в гранитах, которые могут быть основным источником фтора и лития (табл. 2). В то же время, соотношения основных ионов в целом близки. Гидротермальные изменения водовмещающих пород различаются. Для Паратунского геотермального района водовмещающие породы изменены в условиях эпидот-альбитовой, альбит-цеолитовой фаций, тогда как на Сихотэ-Алине это преимущественно глинистоцеолитовая фация [18, 21]. Чтобы оценить степень взаимодействия термальных вод с породами с помощью термодинамического моделирования нами были рассчитаны индексы насыщения термальных вод по отношению к различным минералам. Оказалось, что термальные воды водоносных горизонтов Паратунского месторождения пересыщены по отношению к эпидоту, цоизиту, кальциту, адуляру, альбиту, бариту, кварцу и цеолитам (анальциму, шамозиту, гейландиту, вайракиту, клиноптилолиту, ломонтиту, мордениту, филлипситу и стилбиту). Характерно, что большинство указанных минералов идентифицированы в образцах керна Паратунского месторождения [20]. Рассчитанные формы миграции основных катионов в термах Паратунского геотермального района показали, что основной формой для большинства элементов является ионная, доля сульфатных форм возрастает на Нижнепаратунском участке, а для натрия важна и хлоридная форма [22].

Таким образом, исследованные воды Паратунской и Большебанной гидротермальных систем принадлежат к единому геохимическому типу, и уровень концентраций и взаимосвязь элементов в целом соответствуют азотным щелочным термальным водам. В то же время, существуют и различия между отдельными ее участками, отражающие индивидуальные особенности каждого из них. Это касается, прежде всего, Паратунской системы.

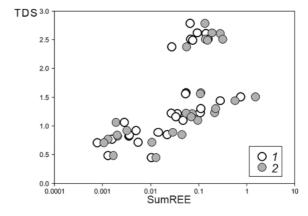
ГИДРОГЕОХИМИЯ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ

Редкоземельные элементы (РЗЭ) в силу различия их свойств и относительной инертности могут быть очень тонкими индикаторами геохимических процессов, происходящих в системе вода—порода, а также отражать изменение водной среды при антропогенном воздействии.

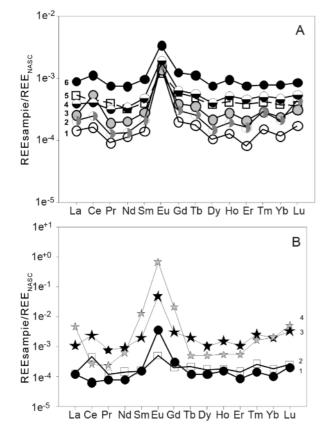
Содержания РЗЭ в изученных водах представлены в таблице 3. Обращает на себя внимание крайне низкие содержания этих элементов — сотые и тысячные доли мкг/л. Если сравнивать с другими типами природных вод, особенно кислыми (pH < 5), то в Паратунской и Большебанной гидротермальных системах они на несколько порядков ниже, приближаются к содержаниям в морской воде. Обратимся к усред-

Таблица 3. Содержания редкоземельных элементов (мкг/л) в гидротермах Паратунского геотермального района.

						Be	Верхняя Паратунка	оатунка						
№ 0браз.	La	Ce	Pr	Nd	Sm	$\mathbf{E}\mathbf{u}$	Сd	$T\mathbf{b}$	Dy	Ho	\mathbf{Er}	Tm	$\mathbf{Y}\mathbf{b}$	Lu
KG-15-14	0.0026	0.0161	0.00054	0.0028	0.00087	0.002497	0.001111	0.000104	0.00053	0.000150	0.00026	0.000042	0.000170	0.000052
KG-15-15	0.0046	0.0173	0.00067	0.0037	0.00085	0.003281	0.00130	0.000211	0.00068	0.000115	0.00028	0.000093	0.000434	0.000101
KG-15-16	0.0077	0.0121	0.00000	0.0057	0.00093	0.000974	0.00102	0.000212	0.00105	0.000179	0.00041	0.000124	0.000496	0.000126
KG-15-19	0.0060	0.0107	0.00092	0.0048	0.00078	0.002803	0.00095	0.000167	0.00051	0.000126	0.00030	0.00000.0	0.000280	0.000062
KG-15-20	0.0029	0.0043	0.00062	0.0029	0.00082	0.001577	0.00104	0.000101	0.00051	0.000105	0.00024	0.000093	0.000494	0.000081
KG-15-21	0.0032	9600.0	0.00061	0.0026	0.00048	0.000370	0.00074	0.000087	0.00045	0.000120	0.00017	0.000042	0.000266	0.000066
Cp(n=6)	0.0045	0.0117	0.00071	0.0037	0.00079	0.001917	0.00103	0.000147	0.00062	0.000133	0.00028	0.000076	0.000357	0.000081
							Карымшина	пина						
KG-15-18	0.0170	0.0323	0.00314	0.0105	0.00227	0.001500	0.00302	0.000408	0.00229	0.000430	0.00127	0.000208	0.001162	0.000173
						Cp	Средняя Пар	ратунка						
KG-15-01	0.0062	0.0125	0.00095	0.0043	0.00109	0.001502	0.00123	0.000200	0.00081	0.000189	0.00058	0.000110	0.000503	0.000120
KG-15-02	0.0076	0.0231	0.00142	0.0065	0.00156	0.001387	0.00177	0.000491	0.00110	0.000276	0.00053	0.000137	0.000874	0.000110
KG-15-03	0.0170	0.0575	0.00328	0.0127	0.00238	0.002118	0.00292	0.000449	0.00202	0.000453	0.00112	0.000204	0.001110	0.000264
KG-15-04	0.0051	0.0122	0.00119	0.0057	0.00147	0.001449	0.00214	0.000362	0.00145	0.000306	0.00074	0.000179	0.000981	0.000190
KG-15-05	0.0045	0.0104	0.00079	0.0035	0.00098	0.001603	0.00139	0.000202	0.00075	0.000226	0.00054	0.000109	0.000426	0.000000
KG-15-06	0.0084	0.0163	0.00175	0800	0.00186	0.001317	0.00225	0.000284	0.00162	0.000280	060000	0.000170	0.001216	0.000169
KG-15-07	0.0089	0.2526	0.00161	92000	0.00140	0.001705	0.00290	0.000309	0.00117	0.000234	290000	0.000123	0.000695	0.000189
KG-15-08	0.0089	0.0281	0.00136	0.0063	0.00147	0.00000	0.00174	0.000221	0.00100	0.000245	0.00045	0.000122	0.000519	0.000135
KG-15-09	0.0007	0.0201	0.00100	0.0000	0.00147	0.002020	0.00537	0.000796	0.00100	0.000242	0.0034	0.000122	0.000317	0.000193
KG-15-10	0.0062	0.0255	0.0022	0.013	0.00174	0.00233	0.0033	0.000750	0.00203	0.000235	0.00055	0.000151	0.000540	0.000160
KG-15-10	0.0002	0.0123	0.00121	0.0018	0.00144	0.001171	0.00053	0.000245	0.00117	0.000233	0.00033	0.000131	0.000343	0.000169
VG 15 12	0.0020	0.0071	00000	0.0010	100000	0.000454	0.00033	0.00007	0.0000	0.000122	0.00027	0.0000	0.0000	0.000045
NG-13-12	0.00.0	0.0310	0.00009	0.004/	0.00093	0.003169	0.00120	0.000163	0.00084	0.000201	0.00032	0.000034	0.00000	0.000123
NG-13-13	0.0026	0.0138	0.00049	0.0018	0.00048	0.000820	0.00003	0.000034	0.00047	0.00007	0.00013	0.000038	0.000223	0.000027
Cp(n = 13)	0.0080	0.0397	0.00150	0.0067	0.00157	0.001662	0.00199	0.000298	0.00128	0.000283	0.00070	0.000143	0.000735	0.000148
						H	æ	ратунка						
KG-15-22	0.0175	0.0389	0.00266	0.0129	0.00275	0.004553	0.00363	0.000547	0.00195	0.000537	0.00127	0.000263	0.001581	0.000266
KG-15-23	0.0049	0.0083	0.00063	0.0030	0.00121	0.004902	0.00135	0.000150	0.00061	0.000216	0.00039	0.000128	0.000299	0.000141
KG-15-24	0.0121	0.1000	0.00260	0.0112	0.00200	0.002402	0.00264	0.000466	0.00174	0.000408	0.00082	0.000150	986000.0	0.000244
KG-15-25	0.1500	0.2484	0.03499	0.1324	0.03022	0.007841	0.03360	0.004986	0.02616	0.005402	0.01430	0.001937	0.012313	0.001791
KG-15-26	0.0124	0.0242	0.00188	0.0127	0.00220	0.003960	0.00272	0.000385	0.00158	0.000307	0.00106	0.000152	0.001240	0.000202
KG-15-27	0.0073	0.0492	0.00113	0.0054	0.00166	0.002434	0.00206	0.000348	0.00141	0.000298	0.00076	0.000208	0.001032	0.000181
KG-15-28	0.0091	0.1265	0.00148	0.0071	0.00151	0.002801	0.00257	0.000363	0.00125	0.000340	0.00083	0.000155	0.000956	0.000254
KG-15-29	0.0138	0.0256	0.00228	0.0092	0.00214	0.004736	0.00237	0.000261	0.00117	0.000310	0.00080	0.000162	0.000822	0.000176
Cp. (n = 8)	0.0284	0.0776	0.00596	0.0243	0.00546	0.004204	0.00637	0.000938	0.00448	0.000977	0.00253	0.000394	0.002403	0.000407
						Ŭ	Северный у	часток						
KG-15-30	0.0079	0.0216	0.00130	0.0053	0.00154	0.002922	0.00220	0.000288	0.00122	0.000248	0.00081	0.000209	0.000903	0.000272
KG-15-31	0.0053	0.0145	0.00070	0.0033	0.00083	0.001223	0.00094	0.000148	0.00055	0.000156	0.00027	0.000077	0.000404	0.000140
Cp. (n = 2)	0.0060	0.0181	0.00100	0.0043	0.00119	0.002073	0.00157	0.000218	0.00088	0.000202	0.00054	0.000143	0.000653	0.000206
T. 1/15.	0000		0.00150	37000	0.00151	130000	Банны	ie	20100	2300000	22000	00000	000000	0.000142
DH-1/13B	0.0090	0.0200	0.00150	0.000	0.00151	0.002834	0.00204	0.000297	0.00120	0.000236	0.00000	0.000128	0.000379	0.000143


÷
િંગ
Z
Ξ
نه
¥
₽
Ö
Ē
0
<u>,</u>
\Box
$\boldsymbol{\omega}$
а 3.
ца 3.
ица 3.
лица 3.
блица
аблица 3.

	La	Ce	Pr	PN	\mathbf{Sm}	Eu	РS	$\mathbf{q}\mathbf{L}$	Dy	H_0	\mathbf{Er}	Tm	Λ	Lu
Бн-3/15в	0.0335	9860.0	0.00775	0.0352	0.00866	0.005411	0.00942	0.001404	0.00779	0.001799	0.00529	0.000782	0.004913	0.000758
Бн -4/15в	0.0048		0.00102	0.0044	0.00097	0.001058	0.00109			0.000135	0.00043		0.000375	0.000094
Бн-6/15в	0.0178	0.0373		0.0227	0.00588	0.002524		0.001105		0.001509		0.000665	0.004198	0.000680
Бн-10/15в	0.0183			0.0108	0.00262	0.003476	0.00308	0.000332	0.00197	0.000378	0.00122	0.000178	0.000959	0.000246
Бн-11/15в	0.0048		0.00100	0.0042	0.00086	0.000602	0.00114	0.000286	0.00083	0.000188	0.00044	0.000116		0.000123
Бн-15/15в	0.0080		0.00114	0.0055		0.003195	0.00183	0.000250	0.00103	0.000237	0.00063	0.000138	0.000714	0.000143
Бн-16/15в	0.0098			0.0069	_	0.001985	_	0.000286		0.000279	_	0.000107		0.000085
Опл-1/15в	0.0047	0.0082	0.00063	0.0025	_	0.000307	0.00087	0.000115	0.00047	0.000111	0.00031	0.000094	0.000400	0.000082
Cp. (n = 9)	0.01229	0.02926	0.00249	0.01097	0.00270	0.00270 0.00238	0.0032	0.00047	0.00241	0.000543	0.00155	0.000254	0.001458	0.000262
						Речн	Речные воды							
Карымшина	0.0231	0.0297	0.00447	0.0162	0.00347	0.001118 0.00456 0.000638	0.00456	0.000638	0.00382	0.00382 0.000838 0.00226 0.000315	0.00226		0.002196	0.000350
Паратунка (низ)	0.0077	0.0170	0.00211	0.0101	0.00235	0.000776 0.00275		0.000379	0.00224	0.000555	0.00176	0.000272	0.001523	0.000316
Паратунка (верх)	0.0052	0.0067	0.00171	0.0093	0.00250	0.000852 0.00302	0.00302	0.000428	0.00286	0.000582		0.000283	0.001776	0.000332
Банная (верх)	0.0069	0.0161		9/00.0	0.00150	0.000534	0.00195	0.000280	0.00125	0.000328	0.00085	0.000146	0.000902	0.000152
р. Банная (низ)	0.0074	0.0132	0.00202 (0.0093	0.00215	0.000793 0.00253	0.00253	0.000329	0.00212	0.000417	0.00127	0.000193	0.001051	0.000182


ненным данным РЗЭ по каждому участку, при этом целесообразно рассмотреть отдельно группу тяжелых редкоземельных элементов (ТРЗЭ) и легких (ЛРЗЭ). В таблице 4 представлены данные по этим группам. В ряду Верхне-, Средне- и Нижнепаратунские участки наблюдается отчетливое увеличение содержания ЛРЗЭ от Верхнепаратунского к Нижнепаратунскому участку, причем почти на два порядка. Такая же картина наблюдается и для ТРЗЭ. Карымшинское проявление и Северный участок ближе по этим параметрам Верхнему и Среднему участкам, что вполне естественно, учитывая их местоположение.

При таких содержаниях вклад РЗЭ в солевой состав вод мизерный, тем не менее, можно проследить связь между минерализацией и суммой РЗЭ (рис. 5). На графике четко выделяется два поля точек: с минерализацией 2.3-2.7~г/л и 0.5-1.6~г/л, в пределах которых наблюдается прямая связь минерализации и концентрации РЗЭ, как легких, так и тяжелых.

Принято представлять результаты по РЗЭ не только в виде таблиц концентраций, но и в виде нормированных кривых, которые представляют собой отношение концентраций в воде по отношению к выбранной матрице. В литературе встречается нормирование РЗЭ природных вод по отношению к хондриту, сланцу, водовмещающим породам, морской воде и т.д. в зависимости от целей исследований. Если говорить о конкретных источниках поступления РЗЭ в воды, то в идеале, для понимания процессов фракционирования РЗЭ в системе вода—порода, нормирование нужно проводить по отношению к водовмещающим породам. Часто это бывает сделать трудно в силу большого петрографического разнообразия водовмещающих пород, с которыми происходит взаимодействие воды.

Рис. 5. Зависимость суммы (SumREE) легких (1) и тяжелых (2) РЗЭ (мкг/л) от общей минерализации (TDS, Γ /л) для термальных вод Паратунской и Большебанной гидротермальных систем.

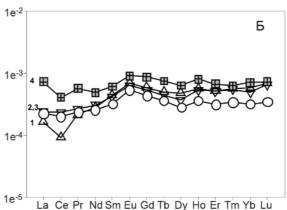


Рис. 6. Нормированные к североамериканскому стандарту (NASC) средние содержания РЗЭ в термальных водах Паратунской и Большебанной гидротермальной систем (A), речных водах (Б) и других азотных термах Камчатки (В). А: 1–6 – участки гидротермальных систем: 1 – Верхнепаратунский, 2 – Среднепаратунский, 3 – Карымшина, 4 – Большебанный, 5 – Северный, 6 – Нижнепаратунский; Б: 1, 2 – р. Паратунка (верховье и низовье, треугольники верх и вниз, соответственно), 3 – р. Банная, 4 – р. Камымшина; В: другие азотные термы: 1 – Начики, 2 – Апачи, 3 – Кеткинские (скв. К-01), 4 – то же (скв. К6).

В этом случае оценить вклад различных типов пород в общую картину распределения РЗЭ в воде становится затруднительно. Также окружающие породы часто бывают гидротермально изменены, т.е. фактически уже прореагировали с водами. Кроме того, когда рассматриваются большие водные подземные резервуары с масштабной циркуляцией в литосфере, то сложно определить историю взаимодействия вода-порода, когда и на каком этапе происходило взаимодействие с тем или иным типом пород. Поэтому, особенно на первом этапе исследований, нормируют к сланцу, грубо отражающему усредненный состав верхней коры, в которой формируется гидросфера. Наиболее широко распространено нормирование к североамериканскому сланцу, состав которого отражен в работе [30]. Цифровые выражения аномалий РЗЭ определяют по формулам, например для церия: $Ce/Ce^* = log(2Ce^*)/$ (La* + Pr*), где значения Ce*, La*, Pr* – нормализованные содержания элементов по отношению к североамериканскому сланцу. Для европия: Еu/Eu* = log(2Eu*)/(Sm* + Gd*), где Eu*, Sm*, Gd* - также нормализованные содержания. Положительное значение означает положительную аномалию, минусовое – отрицательную. Нами проведено нормирование вод как к сланцу, так и к взвеси, если удавалось ее получить. На рисунке 6 приведены нормированные кривые усредненных данных по РЗЭ. На графике А представлены нормированные кривые для Паратунской и Большебанной гидротермальных систем. Отчетливо видно, что по уровням содержаний Нижнепаратунский участок занимает самое высокое положение, а Верхнепаратунский самое низкое. Остальные участки, в том числе и Большебанные термы, располагаются в промежутке. При этом Верхне- и Среднепаратунские воды достаточно близки, ощутимые различия появляются только в области ТРЗЭ. Существенного фракционирования между ЛРЗЭ и ТРЗЭ в исследованных водах не происходит. Основное сходство рассматриваемых терм состоит в присутствии ярко выраженной Еи аномалии. Рассчитанные средние значения европиевой аномалии (Eu/Eu*) показывают, что она укладывается в интервал 0.41-0.89, при этом максимальная величина характерна для Верхнепаратунского участка, а минимальная – для Карымшина. Большебанная гидротермальная система характеризуется европиевой аномалией, равной 0.58 (табл. 4). Крайне низкие содержания РЗЭ и положительная европиевая аномалия фиксировались нами и для азотных терм Сихотэ-Алиня [21, 28].

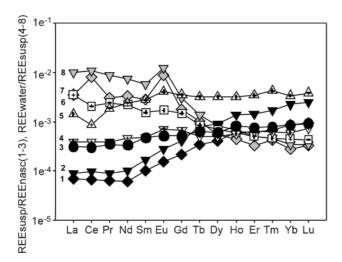
На графике В приведены нормированные кривые РЗЭ других азотных термальных вод, расположенных вне Паратунского геотермального района. В

Таблица 4. Средние суммы легких (ЛРЗЭ) и тяжелых (ТРЗЭ) на отдельных участках Паратунской и Больше-банной гидротермальных систем.

Участки	ЛРЗЭ (мкг/л)	ТРЗЭ (мкг/л)	Eu/Eu*	Ce/Ce*
Верхнепаратунский			•	•
(n=6)	0.023	0.0027	0.89	0.12
Среднепаратунский				
(n = 13)	0.059	0.0055	0.065	0.22
Нижнепаратунский				
(n=8)	0.146	0.0185	0.077	0.24
Карымшина	0.067	0.0090	0.041	-0.02
Северный участок				
(n=2)	0.033	0.0044	0.082	0.17
Большебанный				
(n=9)	0.06	0.01	0.058	0.06
р. Карымшина	0.078	0.015	0.1	-0.2
р. Паратунка (верх.)	0.026	0.011	0.14	-0.32
р. Паратунка (низ.)	0.04	0.01	0.14	-0.04
р. Банная	0.034	0.006	0.14	0.01

Примечание. n – количество анализов, использованных для расчета среднего $Eu/Eu^* = log~(2Eu^*)/(Sm^* + Gd^*)$, где Eu^* , Sm^* , Gd^* – нормализованные содержания элементов по отношению к североамериканскому сланцу; $Ce/Ce^* = log~(2Ce^*)/(La^* + Pr^*)$, где значения Ce^* , La^* , Pr^* – нормализованные содержания к тому же сланцу.

целом картина схожая. Разделения по уровням РЗЭ происходит в целом в зависимости от уровня общей минерализации, но характерна ярко выраженная положительная Еu аномалия.


Для сравнения приведен график Б (рис. 6) для речных вод. Диапазон разброса РЗЭ укладывается примерно в те же пределы колебаний, что и у терм, но фиксируется незначительная отрицательная Се аномалия, хотя для р. Банной это отношение близко нулю. Наибольшая величина — 0.32 — зафиксирована для верховья р. Паратунки. Средние содержания ЛРЗЭ и ТРЗЭ для речных вод примерно одного порядка, в отличие от термальных вод, где абсолютные значения содержаний ЛРЗЭ на порядок выше чем таковые ТРЗЭ (табл. 4).

Нами было проведено определение содержания РЗЭ во ввеси (то, что остается на мембранном фильтре > 0.45 мкм после фильтрования). В таблице 5 приведены усредненные данные для Средне- и Нижнепаратунского участков, а также для рек Карымшина и Паратунка. Здесь необходимо сделать одно замечание. Понятие взвесь для речных вод вполне понятно, и принято ее исследовать, учитывая, что процессы сорбции/десорбции на взвеси активно влияют на фракционирование РЗЭ в системе вода/взвесь [33]. Для подземных вод понятие взвеси весьма неопределенное. Например, при низкой фильтрации

Таблица 5. Содержания РЗЭ (мкг/л) во взвеси (> 0.45 мкм) для Среднепаратунского участка (среднее из 11 проб), Нижнепаратунского (среднее из 2 проб), а также р. Карымшина (КS-15-17) и р. Паратунка (КS-15-32 – низовье, КS-15-33 – верховье).

	с. Пара-	н. Пара-	. I/a	р. Пара-	р. Пара-
	тунка	тунка	р. Карым-	тунка	тунка
	(n = 11)	(n = 2)	шина	(низ)	(верх)
La	2.25560	2.85280	6.61025	19.45036	3.66297
Ce	4.86310	7.04040	14.42904	43.54755	7.66488
Pr	0.49960	0.69210	1.85960	5.51165	0.91102
Nd	2.02220	3.29850	7.32426	21.85265	3.88263
Sm	0.56820	0.94230	2.26012	4.94550	0.89469
Eu	0.19100	0.34740	0.65264	1.08210	0.20968
Gd	1.11370	2.08960	3.09747	4.14079	0.85364
Tb	0.29120	0.68800	0.74576	0.74141	0.13177
Dy	2.38860	5.41240	5.49429	4.45880	0.88491
Но	0.63420	1.45930	1.39667	0.97995	0.18224
Er	2.10880	4.94220	4.43781	2.76315	0.52348
Tm	0.34220	0.84910	0.68388	0.43126	0.06701
Yb	2.64070	6.94420	4.95042	2.57474	0.52202
Lu	0.44510	1.18210	0.81134	0.43257	0.08624

подземных вод теоретически ее не должно быть. В случае высокой скорости водообмена, что характерно для Паратунской и Большебанной гидротермальных систем, на фильтре собирается тонкодисперсное вещество. Отметим, что водовмещающие породы гидротермально изменены и представляют собой относительно слабо литифицированные образования. Так, по данным [15], водовмещающие породы Среднепаратунского участка изменены в условиях эпидот-альбитовой фации, а Нижнепаратунского альбит-цеолитовой. Термальные воды находятся под давлением, и при их движении к поверхности происходит захват вещества стенок жил и трещин, которое и формирует взвесь. Таким образом, по нашему мнению, в составе твердой взвеси, получающейся при фильтрации термальных вод, находятся преимущественно тонкодисперсные вторичные минералы. Для интерпретации данных приведены нормированные кривые РЗЭ (рис. 7). Если мы сравним взвесь двух участков, нормированную к североамериканскому сланцу, то отчетливо видно, что взвесь значительно обеднена, прежде всего легкими РЗЭ. Естественно, если мы нормируем изученные термальные воды к собственной взвеси, то получается обратная картина. При этом, отчетливо фиксируется положительная европиевая аномалия, как мы и наблюдали при нормировании вод к североамериканскому сланцу. Для Среднепаратунского участка отмечается и положительная цериевая аномалия. Для вод р. Паратунка нет существенного фракционирования между ТРЗЭ

Рис. 7. Содержания РЗЭ в воде и взвеси для Паратунского месторождения термальных вод.

1–3 — Содержание РЗЭ во взвеси, нормированное к NASC: 1 — Среднепаратунского участка (среднее из 11 проб), 2 — Нижнепаратунского участка (среднее из 2 проб), 3 — р. Паратунка и Карымшина (среднее из 3 проб); 4—8 — содержания РЗЭ в воде, нормированное к содержанию РЗЭ в собственной взвеси: 4 — р. Паратунка (низовье), 5 — р. Паратунка (верховье), 6 — р. Карымшина, 7 — термальных вод Среднепаратунского участка (среднее из 13 проб), 8 — термальных вод Нижнепаратунского участка (среднее из 8 проб).

и ЛРЗЭ, хотя уровни содержаний в верховье Паратунки выше и отмечается отрицательная цериевая аномалия. В р. Карымшина картина более контрастная - наблюдается некоторое обогащение ЛРЗЭ и отчетливо фиксируется отрицательная цериевая аномалия. Любопытно, что нормирование усредненной речной взвеси к североамериканскому сланцу дает практически прямую с незначительным обогащением взвеси в области ТРЗЭ. Здесь не наблюдается резкого фракционирования между отдельными РЗЭ. Фактически, соотношение РЗЭ во взвеси достаточно близко таковому в сланце, который в большей степени отвечает среднему составу пород литосферы. Это подтверждает обоснованность нормирования речных вод к сланцу в случае отсутствия данных по взвеси. Для взвеси термальных вод, как мы видим, картина иная. Водовмещающие гидротермально измененные породы испытывают наибольшее отклонение от среднего по литосфере, поэтому при нормировании к сланцу это несоответствие и проявляется (рис. 7).

Наличие отрицательных цериевых аномалий указывает на частичное окисление Ce³⁺ до малорастворимого Ce⁴⁺ и, соответственно, более активное удаление его из водных растворов совместно с гидроксидами железа, органическим веществом. Окисление церия во время сорбции на гидроксидах железа

подтверждается экспериментально [27, 46]. В работе [28] показано, что Се-отрицательная аномалия является рН-зависимой и отмечается только в щелочных водах. Отрицательные цериевые аномалии в реках с высокими значениями рН вод и особенно с обилием взвешенного вещества (с большой сорбирующей поверхностью) отмечаются многими авторами [36, 41, 43]. Аномалии Се могут носить сезонный характер в связи с изменением кислородного режима и количества взвеси, определяющей удаление преимущественно легких РЗЭ [34]. Цериевая аномалия нами фиксировалась для большинства рек Сихотэ-Алиня [24], отражая окислительные условия водной среды и наличие органики. Появление отрицательной цериевой аномалии в исследуемых речных водах Камчатки отражает, вероятно, схожесть с реками Сихотэ-Алиня по указанным выше параметрам.

Природа европиевой аномалии на сегодняшний день дискусионна [9, 22, 32, 33, 37, 44]. Исследование поведения РЗЭ в хорошо изученных гидротермальных системах мира (Лордарелло, Италия; Вальес Калдера, Мексика; Калифорния, США; Тибет; Срединно-Атлантический хребет и др.) показало, что в высокотемпературных хлоридных системах (> 230 °C) при рН < 7 фиксируется существенная положительная Еи аномалия, причем картина распределения РЗЭ в этих системах практически одинакова и не зависит от типа вмещающих пород. Тогда как для гидротермальных систем с рН > 7 отчетливо фиксируется отрицательная Еи аномалия [38]. Изучение РЗЭ в подводных морских гидротермальных системах срединно-океанических хребтов показало, что хлоридные высокотемпературные системы имеют хорошо выраженную положительную европиевую аномалию (нормирование к базальту MORB). В то же время, взвешенное вещество (нормированное к сланцу) показывает отрицательную европиевую аномалию. На этом основании делается предположение об источнике европия в растворе [37]. Расчетные данные показывают, что при высокой температуре флюида > 300 °C и соответствующем давлении европий находится в двухвалентной форме и образует хлоридные комплексы, которые являются более устойчивыми, чем комплексы формирующиеся с другими трехвалентными РЗЭ [34]. В термальных водах зоны Таупо (Новая Зеландия) установлено, что при pH = 6.8-7.4 и t = 16 °C фиксируется четкая положительная аномалия, тогда как в осадках – отрицательная. Для трех образцов термальных щелочных и слабощелочных вод с температурой от 62 °C до 90 °C отчетливо просматривается положительная европиевая аномалия. В осадках, связанных с этими источниками, картина обратная [33]. Авторы связывают

поступление в водный раствор дополнительного европия из гидротермально-измененных осадков. Проведенные нами исследования холодных углекислых минеральных вод Приморья и азотных терм показали, что многие из них имеют четко выраженную положительную европиевую аномалию, которая связывается с извлечением его из минералов, содержащих повышенное содержание европия, в частности плагиоклаза [21, 34, 40]. Обратимся к экспериментальным работам [44]. Для эксперимента были взяты группы пород: сланец, песчаник, доломит. известняк, риолит, характерные для водосбора изучаемых вод штата Невада, США. В качестве раствора была выбрана дистиллированная деионизированная вода (рН = 7) и вода подкисленная (рН = 4). Были проведены три группы опытов по выщелачиванию в стандартных условиях. В первой группе опытов с дистиллированной водой соотношение вода/порода было 2:1 и продолжительность опыта 40 дней, во второй группе опытов соотношение вода/порода было 3:1 и продолжительность эксперимента 67 дней. Третья группа опытов – с кислым раствором – соотношение вода/порода было 2:1 и продолжительность 42 дня. Взятые для опыта силикатные и карбонатные породы характеризовались отрицательной европиевой аномалией при нормировании к хондриту. Результаты показали, что для всех проведенных опытов отчетливо фиксировалась положительная европиевая аномалия при нормировании к исходным породам. Для первой группы опытов аномалия фиксировалась в интервале 0.28 < Eu/ $Eu^* < 0.97$, для второй $-0.21 < Eu/Eu^* < 1.61$, для третьей $-0.22 < Eu/Eu^* < 1.82$. При этом, для первых двух групп экспериментов в растворе фиксировалась отрицательная цериевая аномалия для большинства взятых исходных пород. Картина распределения, особенно ТРЗЭ, была крайне пестрой для второй и третьей групп опытов. Таким образом, небольшой экскурс в литературу показывает, что фракционирование РЗЭ, в частности европия, – процесс сложный и поведение элементов этой группы зависит от конкретных физико-химических условий среды. Ясно, что в высокотемпературных гидротермах состав флюидовмещающих пород имеет меньшее влияние на содержание и фракционирование РЗЭ и более строго привязано к рН, давлению и формирующимся комплексам [34]. В приповерхностных, более низкотемпературных гидротермах (температурой < 100 °C) на уровни содержаний РЗЭ и их распределение влияют рН, состав пород и отношение вода/порода. Мы полагаем, что для Паратунской и Большебанной гидротермальных систем, наряду со скоростью водообмена, именно рН и состав вторичных гидротермальных минералов определили уровень и фракционирование РЗЭ, в том числе и положительную европиевую аномалию, по аналогии с термальными водами Таупо [35]. Нельзя исключить и влияние ионной формы Eu²⁺ на формирование положительной европиевой аномалии в изученных термах. Эта форма выявлена при расчетах форм миграции РЗЭ.

Проведенные расчеты неорганических форм миграции РЗЭ демонстрируют, что наиболее распространенными комплексными формами для всех индивидуальных РЗЭ являются следующие: РЗЭ[СО,]+, P3Э[SO₄]⁺, P3Э[OH₂]⁺, P3Э[O]⁺, P3Э[O₂]⁻и P3Э[O₂H]*. Сульфатный комплекс P39[SO₄]⁺ характерен только для легких РЗЭ (La-Nd), в дальнейшем при увеличении атомного номера РЗЭ сульфат-комплексы исчезают. Значимые количества РЗЭ[О,] диагностируются в РЗЭ начиная только с Nd. Бескомплексная форма РЗЭ³+ в концентрациях более 1 % характерна для вод, имеющих температуру ниже 75 °C, причем ее абсолютные значения в данных водах имеют тенденцию к уменьшения в ряду La-Lu. Проведенные исследования показывают, что основная часть бескомплексного европия представлена Eu²⁺.

Основными параметрами, контролирующими формирование комплексов РЗЭ в Паратунской и Большебанной гидротермальных системах, являются следующие: атомный номер РЗЭ (их индивидуальные свойства), рН и Ећ водного раствора, а также его температура. В низкотемпературных водах (T < 40 °C) с рН ниже 8.0 (обр. КG-15-21) превалирующей формой является гидрокарбонатная, и ее содержание достаточно плавно уменьшается в ряду от La к Lu (рис. 8). Исключение составляет неодим – почти во всех образцах фиксируется резкое увеличение карбонатных форм неодима Nd[CO₃]⁺ в сравнении с соседними элементами. Максимальные содержания гидрокарбонатного комплекса РЗЭ (от 55.8 % до 84 % всех форм РЗЭ) зафиксированы в наиболее холодных водах (T < 50 °C), а минимальные (< 0.56 % всех форм РЗЭ) в наиболее высокотемпературных растворах $(T > 90 \, ^{\circ}C)$.

В более высокотемпературных водах (T > 60 °C) и с pH ниже 8.0 (обр. KG-15-22, KG-15-23 и KG-15-24) наиболее распространенными комплексными соединениями являются $P39[O]^+,P39[O_2]^-,P39[O_2H]^*$ и $P39[OH_2]^+$. Причем, если абсолютные содержания $P39[O]^+$ и $P39[OH_2]^+$ имеют тенденцию уменьшатся при увеличении атомного номера P39, то количество $P39[O_2H]^*$ в растворе подчиняется более сложным зависимостям (рис. 8). Во всех изученных образцах происходит резкое накопление $P39[O_2H]^*$ в ряду лантан — церий, которое в дальнейшем либо продол-

Рис. 8. Преобладающие формы миграции РЗЭ в термальных водах Паратунского месторождения.

жает незначительно увеличиваться (обр. KG-15-15, KG-15-16, KG-15-19 и др.) от церия к неодиму, либо наблюдается небольшое уменьшение абсолютных значений $P39[O_2H]^*$. Последний эффект характерен для наиболее горячих вод с температурой выше 57 °C. В целом, сначала наблюдается обогащение $P39[O_2H]^*$ в ряду от средних (Sm) к тяжелым $P39(V_2)^*$, и последующее резкое обеднение от Yb к Lu. Минимальные содержания $P39[O_2H]^*$ (0.01–9.7 %) зафиксированы для наиболее низкотемпературных вод, а максимальные (8.4–71 %) для высокотемпературных растворов.

Для всех образцов выявлена отчетливая обратная зависимость содержания $P39[OH_2]^+$ от щелочности раствора. Вне зависимости от индивидуальных свойств P39 наблюдается уменьшение содержания данного комплекса (%) при увеличении щелочности термальных вод.

Выявлен незначительный тренд в обогащении $P39[O_2H]^*$ в ряду легких P39 и понижении в ряду тяжелых P39 при увеличении щелочности раствора от pH 7.8 до 9. pH-зависимость $P39[O]^+$ комплекса не очевидная.

Все сказанное по формам миграции РЗЭ позволяет заключить, что превалирующими комплексами в изученных термальных водах являются: $P39[CO_3]^+$, $P39[SO_4]^+$, $P39[O_1]^+$, $P39[O_2]^-$ и $P39[O_2H]^*$. Их количественное соотношение в Паратунской и Большебанной гидротермальных системах контролируются рН, Еh и температурой водного раствора, а также индивидуальными свойствами РЗЭ.

ЗАКЛЮЧЕНИЕ

Паратунская и Большебанная гидротермальные системы отражают современный этап развития длительно живущего (с эоцена по голоцен) Паратунско-Банного вулканогенно-рудного центра (Южная Камчатка). Системы локализованы в грабенах четвертичного возраста. Для них характерна мозаично-блоковая структура (за счет развития контрастных по составу вулкано-плутонических комплексов и высокоамплитудных вертикальных тектонических подвижек) и трещинно-жильный тип циркуляции термальных вод.

Состав основных ионов свидетельствует, что Паратунская и Большебанная гидротермальные системы принадлежат к единому геохимическому типу,

а именно азотным термальным водам, формирование которых происходит в областях молодых тектонических движений. Сравнивая составы термальных вод Паратунки и других термальных проявлений Камчатки схожего геохимического типа (Кеткинские, Начики и Апачи), отметим, что в последних значительно преобладает натрий, особенно в проявлении Апачи, а среди анионов ведущая роль принадлежит хлору в Кеткинких термах и гидрокарбонат-иону с хлором – в Апачи. Сихотэ-Алинские азотные термы характеризуются меньшими минерализацией вод и температурой, а следовательно, и более низкотемпературной ассоциацией равновесных вторичных минералов. Несмотря на единый геохимический тип вод Паратунской и Большебанной систем, существуют различия между отдельными их участками. Во-первых, в составе катионов в Большебанных термах больше натрия и кремния, по сравнению с Паратунскими, что связано, на наш взгляд, с более высокой температурой вод Большебанного месторождения. Во-вторых, в пределах Паратунского месторождения термальных вод выделяется Нижнепаратунский участок, в котором более высокая минерализация вод, по сравнению с остальными участками, за счет повышенного содержания натрия, хлора, сульфат-иона, бария и др. Это свидетельствует о возможном влиянии морских вод на состав терм, что подтверждается и данными моделирования.

Уровень концентраций редкоземельных элементов в изученных водах достаточно низок (доли мкг/л), что характерно для щелочных терм. Для Среднепаратунского и Нижнепаратунского участков наблюдается фракционирование между легкими и тяжелыми РЗЭ в сторону обогащения легкими РЗЭ. Европиевая положительная аномалия выделяется для всех изученных нами азотных щелочных термальных вод. Именно положительная европиевая аномалия отличает азотные термальные воды от других геохимических типов вод. Источником дополнительного поступления европия в воды могут быть вторичные гидротермальные минералы, как, например, это происходит в вулканогенной зоне Таупо (Новая Зеландия), а также, возможно, более устойчивая ионная двухвалентная форма европия. Впервые полученные расчетным путем формы миграции РЗЭ в изученных водах демонстрируют, что водная миграция РЗЭ осуществляется главным образом в виде P3Э[CO,]+, P3Э[SO,]+, РЗЭ[ОН,]+, РЗЭ[О]+, РЗЭ[О,]-и РЗЭ[О,Н]*, а их процентное соотношение контролируется индивидуальными свойствами РЗЭ, температурой, pH и Eh pacтвора. Окружающие термальные проявления речные воды (р. Паратунка и Карымшина), характеризуются отрицательной цериевой аномалией, которая обусловлена окислением трехвалентного церия в малоподвижный четырехвалентный.

Работа выполнена при поддержке гранта РНФ 14-17-00415.

Авторы благодарят сотрудников ГУП «Камчатскбургеотермия» г. Елизово, Камчатского края Е.П. Белова, Л.А. Ворожейкину, В.И. Гаврюсева за содействие в проведении экспедиционных работ и консультации.

СПИСОК ЛИТЕРАТУРЫ

- Апрелков С.Е. Тектоника и история вулканизма Южной Камчатки // Тектоника. 1971. № 2. С. 105–111.
- Белоусов В.И. Геология геотермальных полей. М.: Наука, 1978. 176 с.
- Блохин М.Г., Чудаев О.В., Зарубина Н.В. Определение элементного состава взвешенной части вещества в водах рек Приморья с использованием методов плазменной спектрометрии // Геологическая эволюция взаимодействия воды с горными породами: Материалы Второй Всерос. науч. конф. с междунар. участием. Владивосток: Дальнаука, 2015. С. 555–558.
- 4. Власов Г.М. Тектоника Камчатки // Геология СССР. Т. XXXI. М.: Недра, 1964. с.
- Геолого-геофизический атлас Курило-Камчатской островной системы / Под ред. К.Ф. Сергеева, М.Л. Краснова. Л.: ВСЕГЕИ, 1987. 36 л.
- Государственная геологическая карта Российской Федерации. 1:200 000. Сер. Южно-Камчатская. Лист N-57-XXVI (Дальний). Объясн. зап. / Сост. А.К. Боровцов; ред. Б.А. Марковский. СПб.: ВСЕГЕИ, 2002. 300 с.
- 7. Государственная геологическая карта Российской Федерации. 1:200 000. Серия Южно-Камчатская. Лист N-57-XXVI (Дальний). Объясн. зап. / Сост. А.К. Боровцов, ред. Б.А. Марковский. СПб.: ВСЕГЕИ, 2002. 300 с
- 8. Долгоживущий центр эндогенной активности Южной Камчатки. М.: Наука, 1980. 172 с.
- Еловский Е.В. Математическое устранение спектральных помех при прямом определении редкоземельных элементов в природных водах методом квадрупольной масс-спектрометрии с индуктивно связанной плазмой // Масс Спектрометрия. 2015. Т. 12, № 2. С. 107–116.
- 10. Карпов Г.А., Николаева А.Г., Алехин Ю.А. Содержание и источники редкоземельных элементов в современных вулканогенных гидротермальных системах Камчатки // Петрология. 2013. Т. 21, № 2. С. 163–176.
- Кирюхин А.В. Использование геохимических данных для решения задач флюидодинамики // Геологическая эволюция воды с горными породами: Материалы Второй Всерос. конф. с междунар. участием. Владивосток: Дальнаука, 2015. С. 46–48.
- 12. Краевой Ю.А., Охапкин В.Г., Сережников А.И. Результаты гидрогеологических и геотермических исследований Большебанной и Карымчинской гидротермальных систем // Гидротермальные системы и термальные поля Камчатки. Владивосток, 1976. С. 179–211.
- 13. Леонов В.Л., Рогозин А.Н. Карымшина гигантская кальдера-супервулкан на Камчатке: границы, строение, объем пирокластики // Вулканология и сейсмология. 2007. № 5. С. 14–28.

- Лоншаков Е.А. Ряды вулкано-тектонических структур и структурно-вещественные парагенезисы Южно-Камчатского района // Бюл. вулканол. станций. 1979. № 57. С. 79–91.
- Манухин Ю.Ф., Ворожейкина Л.А. Гидрогеология Паратунской гидротермальной системы и условия ее формирования // Гидротермальные системы и термальные поля Камчатки. Владивосток, 1976. С. 143–178.
- 16. Рычагов С.Н., Белоусов В.И., Белоусова С.П. Иерархическая система геотермальных рудообразующих структур. Новый взгляд на генерацию геотермальной энергии в областях современного вулканизма // Вулканизм и геодинамика: Материалы III Всерос. симпоз. по вулканологии и палеовулканологии (Улан-Удэ, 2006). Иркутск: Изд-во ГИН СО РАН, 2006. Т. 3. С. 761–766.
- 17. Рычагов С.Н., Бойкова И.А., Сандимирова Е.И. Ягоднинско-Банная гидротермально-магматическая система (Камчатка): контроль цеолитового, рудного и геотермального месторождений: Материалы XII петрограф. совещ. «Петрография магматических и метаморфических горных пород». Петрозаводск: КНЦ РАН, 2015. С. 534–539.
- 18. Сережников А.И., Зимин В.М. Геологическое строение Паратунского геотермального района, влияние отдельных геологических факторов на современную гидротермальную деятельность // Гидротермальные системы и термальные поля Камчатки. Владивосток: ДВНЦ АН СССР, 1976. С. 115–142.
- 19. Сугробов В.М., Кононов В.И., Постников А.И. Прогнозные ресурсы областей современного вулканизма Камчатки и Курильских островов: научные и прикладные аспекты // Геотермальные и минеральные ресурсы областей современного вулканизма. Петропавловск-Камчатский: ОТТИСК, 2005. С. 9–24.
- 20. Трухин Ю.П., Петрова В.В. Некоторые закономерности современного гидротермального процесса. М.: Наука, 1976. 249 с.
- 21. Челноков Г.А., Калитина Е.Г., Брагин И.В., Харитонова Н.А. Гидрогеохимия и генезис термальных вод источника Горячий ключ, Приморье (Дальний Восток России) // Тихоокеан. геология 2014. Т. 33, № 6. С. 99–110.
- 22. Чудаев О.В. Чудаева В.А., Карпов Г.А., Эдмундс М., Шанд П. Геохимия вод основных геотермальных районов Камчатки. Владивосток: Дальнаука, 2000. 157 с.
- 23. Чудаев О.В. Состав и условия образования современных гидротермальных систем Дальнего Востока России. Владивосток: Дальнаука, 2003. 216 с.
- 24. Чудаева В.А., Чудаев О.В. Особенности накопления и фракционирования редкоземельных элементов в поверхностных водах Дальнего Востока в условиях природных и антропогенных аномалий // Геохимия. 2011. № 3. С. 1–27.
- 25. Чудненко К.В., Карпов И.К. Селектор Windows. Программное средство расчета химических равновесий минимизацией термодинамических потенциалов / Краткая инструкция. Иркутск, 2003. 90 с.
- Эрлих Э.Н. Современная структура и четвертичный вулканизм западной части Тихоокеанского кольца. Новосибирск: Наука, 1973. 242 с.
- 27. Bau M. Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: Experimental evidence for Ce oxidation, Y-Ho fractionation and lanthanide tetrad effect //

- Geochim. et Cosmochim. Acta. 1999. V. 63, N 1. P. 67-77.
- Bragin I.V., Chelnokov G.A., Chudaev O.V., Kharitonova N.A., Vysotskiy S.V. Geochemistry of thermal waters of continental margin of Far East of Russia // Acta Geol. Sinica (English Ed.). 2016. V. 90, Is. 1. P. 276–284.
- Chudaeva V.A., Chudaev O.V., Sugimori K., Kuno A., Matsuo M. Major, trace, and rare earth elements in the surface waters of two Areas of the Kuril Islands // Water-Rock interaction: Proceed. 11th Intern. Symp. 2004. V. 1. P. 109–112.
- 30. Elderfield H., Upstill-Goddard R., Sholkovitz E.R. The rare earth elements in rivers, estuaries, and coastal seas and their significance to the composition of the ocean waters // Geochim. et Cosmochim. Acta. 1990. V. 54. P. 971–991.
- Gammons C.H., Wood S.A., Pedrozo F., Varekamp J.C., Nelson B.J., Shope C.L., Baffico G. Hydrochemistry and rare earth element behavior in a volcanically acidified watershed in Patagonia, Argentina // Chem. Geol. 2005. V. 222. P. 249–267.
- Gromet P., Dymek R., Hoskin L., Krotev R. "The North American shale composite". Its compilation, major and trace element characteristics // Geochim. et Cosmochim. Acta. 1984. V. 48, P. 2469–2482.
- 33. Gruaua Diaa, Olivier-Lauqueta Davranchea, Pinay. Controls on the distribution of rare earth elements in shallow groundwaters // Water Res. 2004. V. 38. P. 3576–3586.
- 34. Haas J.R., Shock E.L., Sassani D.S. Rare earth elements in hydrothermal systems: Estimates of standard partial molar thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures // Geochim. et Cosmochim. Acta. 1995. V. 59. P. 4329–4350.
- 35. Hannigan R.E. Rare earth, major and trace elements geochemistry of surface and geothermal waters from the Taupo Volcanic Zone, North Island, New Zealand // Rare earth elements in the groundwater flow systems. Netherlands: Springer, 2005. Ch. 4. P. 67–88.
- 36. Kharitonova N.A., Chelnokov G.A. The geochemistry of rare earth elements in groundwater from northern Sikhote-Alin (Far East of Russia) // Geochim. et Cosmochim. Acta. Spec. Suppl. Abstr. 15th Annual Goldschmidt conf., 2005. P. 837.
- Kharitonova N.A., Chelnokov G.A., Karabtsov A.A., Kiselev V.I. Geochemistry of Na-HCO₃ groundwater and sedimentary bedrocks from the central part of Sikhote-Alin mountain region (Far East of Russia) // Appl. geochem. 2007. N 22. P. 1764–1776.
- 38. Klinkhammer G., German C.R., Elderfield H., Graves M.J., Mitra A. Rare earth elements in hydrothermal fluids and plume particulates by inductively coupled plasma mass spectomentry // Mar. Chem. 45. P. 179–186
- 39. Leyborne M.I., Johannesson K.H. Rare earth elements (REE) and yttrium in stream waters, stream sediments, and Fe-Mn oxyhydroxides: Fractionation, speciation, and control over REE + Y patterns in the surface environment // Geochim. et Cosmochim. Acta. 2008. V. 72. P. 5962–5983.
- 40. Michard A. Rare earth element systematics in hydrothermal fluids // Geochim et Cosmochim. Acta. 1989. V. 53. P. 745–750.
- Moller P. The behaviour of REE and Y in water-rock interactions // Water-Rock Interaction: Proc. 10th Intern. Symp. Netherlands, Rotterdam: Balkema, 2001. V. 2. P. 989–992.
- 42. Shand P., Edmunds W.M., Chudaeva V.A., Chudaev O.V., Chelnokov A.N. High PCO₂ cold springs of the Primorye region, Eastern Russia // Proc. 8th Intern. Symp. on Water-

- Rock Interaction / Eds. Y. Kharaka, O. Chudaev, A.A. Balkema. 1995. P. 393–396.
- 43. Shannon W.M., Wood S.A. The analysis of pictogram quantities of rear earth elements in natural waters // Rare earth elements in groundwater flow system / Ed. Johannssen Karen. Springer. 2005. P. 1–37.
- 44. Shiller A.M., Chen Z., Hannigan R. A time series of dissolved rare earth elements in the lower Mississippi River // Water-Rock Interaction: Proc. 10th Intern. Symp. Netherlands: Balkema, 2001. V. 2. P. 1005–1007.
- 45. Sholkovitz E.R. The aquatic chemistry of rare earth elements in rivers and estuaries // Aquat. Geochem. 1995. V. 1. P. 1–34.
- 46. Zhou X., Stetzenbach K.J., Yu Z., Johannsson K.H. Origin of rear eath elements signatures in groundwaters of South Nevada, USA, implications from preliminary batch leach tests using aquifers rocks // Rare earth elements in groundwater flow system / Ed. Johannssen Karen. Springer, 2005. P. 141–160.

Рекомендована к печати А.И. Ханчуком

O.V. Chudaev, G.A. Chelnokov, I.V. Bragin, N.A. Kharitonova, S.N. Rychagov, A.A. Nuzhdaev, I.A. Nuzhdaev

Geochemical features of major and rare earth element behavior in the Paratunka and Bolshebannoe hydrothermal systems of Kamchatka

This paper presents original data on the content and distribution of major and rare earth elements in modern hydrothermal systems of Paratunka-Bannoy area of Kamchatka. Despite the similar geochemical type of water within the individual sections of the studied hydrothermal systems, there exist differences in major ions due to the time of water-rock interaction, temperature control and the possible influences of sea water intrusions. The levels of rare earth elements (REE) in the studied thermal waters are very low (parts of ppb), and a distinctive feature of these waters was the presence of a positive Eu anomaly. Here, we discuss the possible reasons for the appearance of this anomaly. In addition, calculation of REE speciation showed that the main parameters governing the formation of REE complexes in the Paratunka and Bolshebannoy hydrothermal systems are the atomic number of REE (their individual properties), as well as pH, Eh aqueous solution and its temperature.

Key words: nitric therms, rare earth elements, water-rock interaction, Kamchatka.